
Driving Quality
Front-to-Back Test-Driven Development

Aleh Matus
Jacob Mulholland

OTUG - 4/17/2012

Aleh Matus
Aleh Matus is the founder of Modelus. He specializes in software design,
business domain and mathematical modeling and has a passion for creating
innovative technology solutions.

 Jacob Mulholland
As Principal Consultant at Modelus, Jacob works with small clients and large
enterprises in all facets of technical and business solution development.
Recognizing huge gaps in technical skill-sets, Jacob has forged an effort to
bring invaluable lessons of Design Patterns, DDD, TDD, and OO into the client-
side UI/UX community. Through his OOUI effort, Jacob is redefining the
thought-process and methodologies of client-side development.

Test-Driven Development

■ Never write a single line of code unless you

have a failing automated test
■ Eliminate duplication

Kent Beck, Test-Driven Development: By Example.
Addison-Wesley Professional, 2003.

Objectives for Tests

■ Speed
■ Automation
■ Availability
■ Repeatability
■ Clarity / single purpose / single reason to fail
■ Isolation / side-effect free behavior

Single-Responsibility Principle

Every Test should have a single responsibility.

For Tests, we define Responsibility as a reason
to fail. Every Test should a single reason to fail.

Objectives for Development

When working on development projects, focus
on the following objectives:

■ Support DDD philosophy
■ Establish TDD techniques
■ Create Distributed Development

environment
■ Favor set-based design over point-based

design

Development Flow Principle

Allow complexity to develop naturally in the
application while maintaining a sustainable
development pace.

Release Unit Pattern

Release Unit is a collection of folders and files
that are released together.

The source code is organized in Release Units
that follow a domain context map.

All Release Units adopt a standard layout.

Release Unit Pattern
<<UI>>

 <<tested with>>

<<Application / Integration>>

 <<tested with>>

<<Persistence>>

 <<tested with>>

<<Model>>

 <<tested with>>

CssTest

QUnit

Selenium

JMeter

FitNesse
JUnit

NUnit

JUnit

NUnit

JUnit

NUnit

Model
Methods

Class Design Principles
Separation of Concerns
Dependency Management
Keep Classes free from Infrastructural Knowledge
Automate Assertions via Reflection

Tools

xUnit

Database
Methods

Testing Database via Repository Interfaces
Dedicated Database for each Test Project

- Local Database on Dev Machines
- Local Database on Build Agents

Using Transactions in Base Test Class for Persistence
Testing for Minimum and Maximum Conditions
Database Script Management

- Database Create Scripts for Release Units
- Database Update Scripts for Deployment

Tools

xUnit

JavaScript
Methods

Separation of concerns
Inversion of control
Attribute: class is instance

Tools

Web Browser
QUnit

CSS
Methods

Separation of concerns
Attribute: class is instance
Selectors are signatures
Forego the cascade

Tools

Web Browser
SASS
Compass
CssTest

Questions

?

